A Novel Index Supporting High Volume Data Warehouse Insertions

Christopher Jermaine
College of Computing

Abstract

While the desire to support fast, ad hoc query pro-

cessing for large data warehouses has motivated the

recent introduction of many new indexing struc-

tures, with a few notable exceptions (namely, the
LSM-Tree [4] and the Stepped Merge Method [1])

little attention has been given to developing new
indexing schemes that allow fast insertions. Since
additions to a large warehouse may number in the
millions per day, indices that require a disk seek (or
even a significant fraction of a seek) per insertion
are not acceptable.

In this paper, we offer an alternative to the B+-tree
called theY-treefor indexing huge warehouses hav-
ing frequent insertions. The Y-tree is a new index-
ing structure supporting both point and range
gueries over a single attribute, with retrieval perfor-

Anindya Datta
DuPree College of Management
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology

jermaine@cc.gatech.edu adatta@cc.gatech.edu

Edward OmiecinskKi
College of Computing

edwardo@cc.gatech.edu

after it has been issued using indexing and fast algorithms,
thereby allowing ad-hoc querying of the warehouse. We
focus on the second option in this paper.

Work on processing ad-hoc queries over huge ware-
houses has resulted in the development of a number of spe-
cial-purpose index structures, such as Projection Indices in
Sybase 1Q, Bitmapped Indices (BMI) in Oracle and Bit-
mapped Join Indices (BJI) in Informix and Red-Brick (see
[5] for an excellent treatment of these structures). Together
with the regular value-list (B+-tree) index, the various grid-
based approaches, and hierarchical, multidimensional struc-
tures such as the R-tree (we refer the reader to [8] for a sur-
vey of these and other access methods), these structures
represent a formidable set of options for indexing large
warehouses. However, while significant query processing
advantages have resulted from these indices, warehouse
refresh performance has suffered, seriously affecting the
availability of the warehouse.

Warehouse refreshes differ from standard database
insertion in that typically, refresh involves the addition of a
number of new rows to a single, central fact table. The
smaller dimension tables may also grow, but such growth is
. usually very slow compared to fact table growth. Usually,
1 Introduction indexing in a data warehouse is done on foreign keys in the

Efficiency in OLAP system operation is of significant cur- central fact table. If the number of distinct attribute values
rent interest, from a research as well as from a practical pefor & foreign key is relatively small, this can allow for fast

spective. There are two primary options for supportingindex refresh, with only a few localized index changes
efficient queries over a huge data warehouse. The first optiofduired for each insertion. It is in this situation that a BMI is

is to allow the user to pre-define a set of views on the warebarticularly useful, since a refresh of the fact table will result
house, where query results are at least partially pre-conil! @ppends of bits to only a few, already existing bitmaps.
puted and maintained as data are added to the warehoudd@Wever, itis not always the case that the number of distinct

The second option is to compute the results of a query onljoreign key values is small. We now present a case where
this quantity is not small, and discuss the implications for

index refresh.

mance comparable to the B+-tree. For processing
insertions, however, the Y-tree may exhibit a
speedup of 100 times over batched insertions into a
B+-tree.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-1.1 Example

mercial advantage, the VLDB copyright notice and the title of the . L . .
publication and its date appear, and notice is given that copying isWe illustrate the problem of maintaining an index in the face

by permission of the Very Large Data Base Endowment. To cop@f @ high insertion rate with an example drawn from the
otherwise, or to republish, requires a fee and/or special permissioflomain of call detail record (CDR) warehousing for tele-
from the Endowment. communication service providers. CDRs are records that are
Proceedings of the 25th VLDB Conference, Edinburgh, Scot- generated corresponding to every call through a telecommu-
land, 1999. nication network. Such records are approximately 700 bytes

235

in length. The AT&T corporation experiences a call detalil the resulting tree structures can be constructed opti-
growth of around 20 GB/day, which translates to approxi- mally, with full nodes, and long runs of data can be
mately 28 million calls per day [2]. When these records are stored sequentially on disk to allow fast query process-
warehoused, assuming significant aggregation with respect ing. Also important is the fact that since the new struc-
to the detail records accumulated in CDR stores, one can rea- ture can be constructed from fast, sequential scans of the
sonably expect an order of magnitude decrease in the num- old structure, disk seeks can be minimized during con-
ber of stored records. This translates to an average addition struction, thereby drastically decreasing the average
of nearly 3 million records per day. If seven years worth of time required per insertion when compared to the value-
data are maintained, the complete warehouse needs to store list index. However, a disadvantage of these methods is
approximately 8 billion records. that in the case of a skewed insertion distribution, entire
Now, consider a BMI on some attribute of the central nodes must be rewritten, even if only a very few key val-
fact table of this warehouse, perhaps on the customer ues need be written to that node. We will discuss these
account number. It is not unimaginable that on the order of issues more in detail in Section 5.
10 million distinct account numbers would be found in this . .
particular fact table. A BMI on the customer account numberl'2 An Index Allowing Fast Insertions

would then be made up of 10 million (very sparse) bitmapg, response to these issues, we have developedAfis-tree
composed o8 billion bits each Clearly, this is likely a pro- (Yet Another Tree Structuiteee) orY-treefor short. The Y-

hibitive storage requirement. tree is an exceedingly simple, hierarchical, secondary index-

Of course, these bitmaps could be compressed, but i strycture for use in evaluating point and range queries
such an extreme case, it would probably be preferable 1o usger 5 single attribute, much like the value-list index. In fact,

a value-list index, where instead of a bitmap for each Cus;; ¢4 pe used to support the same set of secondary indexing
tomer account number, a list of pointers to fact table e”t”e%pplications as the value-list index.

is stored. Note that if a compression scheme like RLE [3] However, in contrast to the value-list index, the Y-tree

were used on the BMI, it would essentially become equivasg gesigned to allow very fast insertions into a huge database.
lent to using a value-list index. Because of this, and the prois s accomplished with the idea of single-path, bulk
hibitive storage costs associated with using an uncompressetkartion In a Y-tree. a set of some small number ’Of inser-
BMI in this warehouse, the value-list index is the primary i,ns (say, 500) are batched and inserted at once into the
existing option that we will consider for such a situation g¢;ctyre. There are no constraints placed on what key values
throughout this paper. Were a value-list index u_sed mstead_ qfnay be in this set and performance is totally unaffected by
a BMI, there are two likely approaches to handling the 3 mil-yyq ey values a batched insertion set contains. Insertion into
lion insertions per day: the Y-tree is calledsingle-path, bulk insertionbecause

« Incremental, batch insertionould be used. Insertions regardless of the key values, an insertion of a sekey, (pt)

could be batched, so that each edge in the tree need IR&irs will only require a traversal from the tree root tsia-

traversed at most once. We have found that on our sysd/€ leaf node holding a list of record identifiers. In this way,
tem, incremental, bulk insertion (following the algo- the Y-tree can achieve speed-ups on the order of 100 times

rithm outlined in [6]) into a similar structure, under OVer incremental, batch insertion into a value-list index. The
similar conditions (cf. Section 4) can be accomplished af_jaily insertion of 3 million key values into the value-list

the sustained rate of 100,00k, pt) pairs in slightly ~ index described above (that would take nearly the entire day
more than 41 minutes. This means that insertion of 30 complete) would take less than 12 minutes were a Y-tree

million (key, pt) pairs per day could be expected to take Used instead. _ . . .
longer than 20 hours to complete. In other words, it Thereis a cost associated with the faster insertion
would barely be possible to keep up with this insertiontimes. The Y-tree can producg sIc_>wer guery response times
rate even if all system resources were devoted to maintevhen compared to the value-list index. For example, when
nance, 24 hours a day. Even if more hardware weraised for evaluation of a point query returning a sindley(
added to combat the problem, one can assume that in ttr) pair, the Y-tree is on the order of four times slower than

face of ever-increasing warehouse sizes, the problem 1€ value-list index (point queries, however, are expectedly
bound to recur. rare in a warehousing environment). But as the size of the

query result increases, as is the case in standard OLAP que-
« Or, we could forsake the purely incremental approachyies, the efficiency of the Y-tree increases as well. When used
and rebuild the index, using the old index as a guidefor evaluating range queries returning 1 million such pairs
The LSM-Tree [4] and the Stepped Merge Method [1]for a large database, the Y-tree is only around 50% slower
are two access methods that use a version of such fyan an optimally, bulk-constructed value-list index, and can
rebuild of a B+-tree as their fundamental approachbe nearly three times fastehan a value-list index that has
These methods both have the important advantage th@leen built incrementally. Depending on certain parameters, a

236

1
Ex J 23

o [pt] et ptrfpt o] 1 Jotpt pt] 2 o pu]pu] ptptptpt] ...

leaf nodlg
leaf node leaf node leaf node leaf node leaf node leaf node
Figure 1: An example Y-tree.
Y-tree may then actually bpreferableto a value-list index <Py, Ky, Py, Ks,..., B, Kiq, PP

for handling large queries. Combined with the fact that stan-)])
dard, value-list index insertion is virtually unusable for huge, ~ The associatetleapis logically a set of bucketswhere
constantly growing databases, we feel that the Y-tree repre- fis a constant chosen before the structure is constructed.

sents an important alternative to the value-list index. f denotes the fanout of the tree. The heap has an associ-
o ated maximum heap sizg which likewise is chosen a
1.3 Paper Organization priori. Each of thef buckets is associated with exactly

one pointer to a node lower in the tree, and holds a set of
ordered pairs of the forrmkéy, pt). These ordered pairs
are identical to those found in the leaf nodes; indeed,
they may eventually be moved into leaf nodes from
buckets located in internal nodes, as we will describe
below.

This paper is organized as follows. In Section 2, we present
the Y-tree structure and the associated algorithms. In Section
3, we present an analytical study of the Y-tree. We compare
it to the value-list index, showing that the Y-tree presents a
very attractive alternative to the value-list index at query and
insertion loads that one would commonly expect in a huge

data warehouse. In Section 4, we present experimentalogically, then, the Y-tree looks something like what is

results comparing the performance of actual implementadepicted above in Figure 1. Figure 1 shows a tree constructed
tions of the two structures. Section 5 presents some relatagith valuef = 3.

work; we conclude the paper in Section 6.

2 The Y-Tree

L o The primary goal in designing the Y-tree is to provide for
The Y-tree is similar in many ways to the value-list index. g45t jnsertion while maintaining the functionality of the
Like the value-list mdgx, it is a hierarchical structure com-, o e-list for indexing quickly evaluating range queries and
posed ofeaf nodesndinternal nodes also point queries. We discuss Y-tree insertion in this section.

» Leaf NodesAssuming that the data are not clustered on2
disk with respect to the indexed attribute, leaf nodes are

simply sets of ordered pairs of the forrkef, ptr-lis) Insertion into the Y-tree is very fast because of the two
wherekeyis a value from the domain of the attribute important properties of the Y-tree we describe now. The first

value to be indexed, arptr-list is a list of RIDs contain- property is common to both the Y-tree and the value-list
ing that key value. Each leaf node is guaranteed to be ghdex:

least 50% full at all times. In practice, we have found . . o
that a utilization of 65-70% is typical. This much is sim- Property 1. The insertion of akey, pt) pair into the tree
ilar to the classical value-list index. results in the reading and writing of nodes on at most one

) path from root to leaf level in the tree.
* Internal Nodes The internal nodes of the Y-tree are

quite different from those of the value-list index. Each The second property is quite different than for a value-list
internal node contains two Components' ﬂmnter-list index, and is at the heart of the Speed with which insertion
and theheap The pointer-list is borrowed from the into the Y-tree may be accomplished:

value-list index. It is simply a list of the form:

2.1 Insertion Into the Y-tree

.1.1 Why Insertion Is Fast

237

Algorithm Insert(parametersS. set of key, pt) pairs of] T
cardinality no greater thaih) N: Nodehaving fanoufy) BOBE
1) If Nis an internal node: [s [ot] [5 [p]
2) For each elemerst of S, adds into the first heap 7o [EE X P
bucket b, such that the associated key vajue 10

=

\ Y

K; >s.key; or, inset into the last heap bucket

there is no suck;. Figure 3: Example insertion into the root n@def Figure 1
3) Choose the buckeg; that has the moskey, pt) T
pairs. BERE nzlam
4) If the heap contains more théhy —1) xd pairs, [aTev] []rY]
5) Removemin (d, size(h) (key, pt) pairs] [e Tod] [7 T
| ’ Gl) 4

from by to createS,e,, write N to disk, ang

recursively callnsert(S,q,, Node pointed t] Y o _
by P) Figure 4: Recursive insertion into node B of Figure 1.
})-

6) Else, writeN to disk.
7) OtherwiseN is a leaf node:

8) Simply addSto the set ofKey, pt) pairs inN, then| \ye now demonstrate the algorithm on the tree of Figure 1,
write N to disk. by adding the se&= {(1, ptr), (1, ptr), (2, ptr), (13,ptr), (18,
Figure 2: Algorithm to inserd (key, pt) pairs into a Y-tree. ptr)} to the tree. In this cased = 5. First, Sis distributed
among the buckets of the root noAgas shown in Figure 3.

Property 2. For a given heap size, there exists some constarffote that the right-most bucket in Figure 3 had more tan
d such that the cost of insertiray(key, pt) pairs into the Y- pairs evenbeforethe insertion of the se§, a state that is

tree is identical to the cost of inserting a sindtey, pt) pair ~ indeed possible in practice.
into the tree. Next, we determine that the leftmost bucketfdton-

tains the most pairs. This bucket is thgnainedby removing
We will elaborate on this property in Section 2.3.2, but theq jtems from the leftmost bucket & which are then recur-
immediate implication of this property is thatinsertions gjyely inserted into the corresponding child noge,Note
into the structure may be buffered and inseritedbulk into that the set ofl pairs drained from a node and recursively
the tree, and that single insertionapairswill still resultin jnserted into a child node is likely to be different than the set
updates to nodes on only a single path from root to leaf levebs pairs originally inserted into the node. In our example,
in the tree. Ifd is large enough, this has the potential to allow gfter the set of pairs {(1ptr), (1, ptr), (2, ptr), (5, ptr), (9,
an orders-of-magnitude speedup in time required for inserptr)} has been drained intB, B will appear as is depicted in
tions into the tree. Also, it is important to note that, as WeFigure 4. Finally, the left bucket of the nod® will be
will describe in a later section, this is quite different (and grained, with the set {(@ptr), (1, ptr), (1, ptr), (2, ptr), (4,
superior, we argue) to the common method of bulk insertiomty)y selected and recursively inserted into the proper child,
into a value-list index where a huge number of insertiongeaf nodeC, of Figure 1.
(perhaps as many as can be fit into main memory) are buff- The reason that a single insertion only follows one path
ered and a massive update of the tree at one time is pefrom root to leaf is that at each level of the tree, pairs not fol-
formed. In the Y-tree, insertion is still local and incremental.m\,\,ing a given path from root to leaf are effectively traded
Thus, insertion performance is relatively insensitive to thegg, pairs that do and have been buffered in the heap. The
size of the tree, just as is the case in the classical value-lisﬁeap within an internal node provides a storage space for
index. Insertion costs, however, are amortized across inseframs which have been inserted previously but never reached
tions of perhaps hundreds dtefy, pt) pairs, allowing for a 3 |eaf node. A future insertion will again traverse that inter-
huge speedup. nal node, picking up those buffered items and dropping off
2.1.2 The Insertion Algorithm others en routt_e tq a leaf _node. By not requiri_ng that the
actual set of pairs inserted into the tree at that time reach a
We now describe the algorithm for insertion into the Y-tree,leaf and instead only requiring thabmeset of pairs of
which is quite simple. For the moment, we ignore the issueequivalent size reach a leaf, fast insertion can be achieved.
of full leaf nodes, which may cause node splitting. The algo-
rithm is shown above in Figure 2.

A=

2.1.3 Example Insertion

238

2.2 Node Splits and Queries of the Y-tree Note the presence of the wodiskin Theorem 1.3.1. This is

)) [important; after a node has been read from disk and the
As mentioned previously, when a leaf node becomes full, i{nsertion set added, its size while resident in memory may be
must be split. Splits are handled in the same way as in Mogjreater than (fy—1)xdxn. However, once it has been
hierarchical structures. We describe the handling of splitgjrained and written back to disk, Theorem 1.3.1 will again

and queries now: hold. An important related property is the following:

Leaf Node Split The entries of the leaf node are parti- property 3. While the total heap size is bounded by
tioned around the median key valkérom L. Entries greater (f _ 1) x d x n on the upper side for a nod¢ in practice

than the median key value are placed into a new leaf nodey il contain (f—1) xd ey, pt) pairs.

Lhew This node is then added to the parent internal node,

Nparent The bucket ifNparentassociated with. is split, with That is, the heaps in all internal levels of the tree tend to fill

the (ey, pt) pairs it contains partitioned arourid Finally, ~ up quickly; and exceptimmediately after splits occur there is

the pointer-list iMparentis updated accordingly. rarely any extra space in a given heap. This implies that there
) . . is likely no easy way to decrease the amount of storage space

Internal Node Split: Identical to the leaf node split, except required for an internal node (and increasing the fanout) by

that the node (heap buckets and pointer-list entries) is partsomehow making use of some property of the heap.

tioned around the pointer-list entiy,. Also, it is worthwhile to note that there is very little util-

Queries: Queries to the structure are handled with a simpleIty In considering the idea of storing the heap for an internal

in-order traversal of the tree. Note that sinkey(pt) pairs node separately from the pointer-list. This is because both
mav be present in buckets .in internal nodes Thephea s dﬁring updates to the structure and during query evaluation,
may P ' PS 9 e buckets associated with a node will need to be accessed
internal nodes that are traversed must be searched as well. . . o

at the same time as the pointer-list is searched.

2.3 Discussion 2.3.2 Practical Choices of andd

In this section, we discuss some of the concerns and practice!hoosmgc andd s a subjective optimization problem whose
considerations associated with the use of the Y-tree. In Pary sice is balanced by two competing goals: the desire for

ticular, we discuss storage issues and some of the trade-oifs o .) :
. . ; ast query evaluation times and the desire for fast insertion
involved in choosing values éaindd.

time. Providing some insight into proper choiced ahdd is
2.3.1 Bucket Growth and Storage at the heart of this paper.
We now outline the parameters that can be modified

Of practical concern is the amount of heap storage space p@Fior to construction of a Y-tree, and briefly describe the
internal node that must be allocated to allow a single pathgosts associated with each:

bulk insertion size ofl. Not unexpectedly, this requirement

scales withf andd: d: A larger maximum insertion set size typically speeds
the insertion rate into the tree.

Theorem 1.3.1Letn be the number of bytes needed to store))

a (key, pt) pair. The totalisk storage required for an inter- T A larger internal node fanout typically decreases query

nal node heap is at mogtf \ —1) xdxn , wheffgis the response times gnd insertion times. However, a high
fanout of the node in question. fanout coupled with a large value fdrcan cause node

sizes to become large enough that query evaluation and
Proof. The proof is by induction on the number of insertions. insertions are slowed.

Assume that after a previous insertion, there were no more) .) .]
thanmax= (f —1) xd (key, pt) pairs in the node. Then, Node size Larger internal node sizes typically increase
an additionak pairs are inserted into the node such that 0 < fanout, decreasing query times up to the' point V_/here
x < d. Assume that the node is now overfull by a certain nodes are too large to be read and written quickly.
number of pair®, such that 0 © < d (if the node is not Larger nodes almost always result in faster insertions.

overfull, then the node has fewer thamex pairs after the \yhat are typical values dfandd, and typical node sizes?
insert and the theorem trivially holds). In this case, at leaste node size grows proportionally feand d, so thatf =
one_bgcket has a minimum _an_ax+ 9/ fy pairs (sinceto (Node sizé (0 X d + B)), where akey, pt) pair has a size
ml_nlmlze_the number of pairs in the bucket with timeost _inbytesO and there is some small overhead per bufket
palis, pairs must be evenly distributed among buckets). Sincg, giqre pointers, boundaries, and any other information (this
o = d by algebraic manipulation it follows that o, aniity is on the order of 12 bytes in a typical implementa-

o<(max+ g/ fy. Thus, there exists at least one buckety,ny aAs might be expected from this linear relationship
havingo or more pairs. After this bucket is drained, the heappeqyeen node size and insertion set size, node sizes in the Y-

again contains fewer thanaxtotal pairs. tree are relatively large. While a value-list index typically

239

uses internal node sizes that are equivalent in size to one disk
block (perhaps using larger node sizes for leaf nodes) a Y-

internal parent node

tree node may be huge in comparison. Node sizes in the | #1 bucket #2 #4 | | |é
range 8KB to 256KB or even larger are typical. Typical
choices ofd, the maximum insertion set size, range from 50 \\m\/
to 2500 or larger, with corresponding maximum fandut heap
from a high value of 100 all the way down to 10, much
smaller than for a value-list index. However, as we will argue . .
pointer-list

in subsequent sections, the negative effects that one ma SRR
expect would be associated with huge node size and small @ |,| M\H\M é
fanout never really materialize, making the Y-tree a natural
choice for many database applications.

N N £ S N B

child node child node

2.3.3 Handling Very Large Node Sizes

For very fast insertion times, node sizes may be very large:
up to a significant fraction of a megabyte. Though it may not
be possible to optimize by locating internal node heaps at a
location other than with the internal node, a few optimiza-

Figure 5: Optimized layout of an internal node for huge
node sizes in the Y-tree.

tions are possible when node sizes are particularly large. | Teeor | Average time required to perform a disk

These optimizations prove especially effective when nodes seek

are too large to fit on a single disk track. : .
A first optimization is to couple amnd-pointerwith Ttrans }Ar\\(;i:a(ggkt Iﬂ?&;in;feer;g?m’ Pt pair

every pointer in the pointer list. Thus, the internal node - : y

pointer list becomes as follows: N Size, in key, pt) pairs, of a tree node

<(P1, end), Ky, (P2, endh), Ky,..., Pr.1, eng _p), Keg, f Fanout

(Ps, end)>. d Insertion set size for the Y-tree

The end-pointerdenotes an offset from the beginning of the | P Number of insertions batched for value-list

corresponding child node that lets the parent node know index

exactly how many bytes need be transferred from disk into | n Number of key, pt) pairs in the tree

main memory. When the node corresponding to the end-

pointer is a leaf node, the end-pointer points to the leeay,(Table 1: Notation

ptr) pair in that node. When a leaf is transferred from OIISI(responding to the children meeting the search predicate. This

into memory, on average it is only around 70% full (thOUthact can be used to our advantage as follows. First, we pack

i i 9 %). The end-pointe : 9 I P
this percentage varies from 50% to 100%). T P {he heap buckets tightly together, and add pointers to the
allows the transfer to be halted at the point where the portion '

of the node that is in use has been completely transferred. Igomtgr-hst to the beginning of each bucke.t. The disk !ayout
c(q an internal node, then, resembles the diagram of Figure 5.

the case of an internal node, the end-pointer points to the en . .
: P P In the case where a query over the depicted internal

of the pomte_r list, so that initially, the entire heap need not benode is encompassed wholly by the range defined by the first
read from disk.

More conventional storage of the end-pointer Withinand second keys in the node’s pointer-list, a short disk seek

. . . n be performed to reach the beginning of the second
the node itself is of less use because of the delay mcurreﬁcket. 'IPhen a scan of that bucket ug untilgthe beginning of

between reading the head of the node, stopping the transf . : .
and re-sending the request that the remainder of the node %[ée third bucket is performed. The correspondikgy(pt)

. , . : . entries from that bucket can then be searched for a match.
retrieved from the disk. Note that this is a non-issue in th . . . ;
o o . . Particularly in the case of an index over a huge database with
case of a value-list index, where node size is typically equiv- . . ? .

i very large node sizes, this method can provide a substantial
alent to the system disk block size, and so it makes little. :
! time savings in evaluation of certain types of queries, as we

sense to access less than an entire node.

The second possible large-node optimization foIIowsWIII show in Section 4.

immediately from the first. During query evaluation, it is the 3 The Y-Tree Vs. The Value-List Index
case that the heap of every internal node encountered must))
be searched for the existence &ey, pt) pairs meeting the We now offer an analytical comparison of Y-tree and value-

search predicate. However, it imt the case that thentire ISt index performance as a preface to Section 4, where we
heap need be searched; we need only those heap buckets cwil describe our experimental results. In this section, we

240

will use the notation in Table 1. Also, for the sake of simplic-« We assume that the cost of accessing internal nodes dur-
ity and brevity, we will assume that the node sizes for both ing a large, batched insert is negligible. If one million
internal nodes and leaf nodes are the same, and that in a leaf different leaf nodes must be read and written, the num-
node, each key value has a single, unique, associated pointer ber of distinct internal nodes which must be traversed in
(as opposed to an associated, varying-sized RID-list as order to reach those leaf nodes will be less than 1/100 of
would be expected for an attribute with a small cardinality the number of such leaf nodes (assuming a fanout of
compared to the overall, fact table size). We will drop this larger than 100), and will be insignificant.

assumption in Section 4. . .
P * We assume that splits occur infrequently enough that

3.1 Insertions they do not contribute significantly to the cost of

. . }] , batched insertion.
In our analysis, we will compare Y-tree insertion times to

batched, value-list index insertion times using the algorithmGiven these assumptions, the cost to batch insert a det of
outlined in [6]. The advantage of using a batch algorithm for(key, pt) pairs into a value-list index is simply:
value-list index insertion (as opposed to classical, item by bx(2xT x Ng, + Teoen
item insertion) is that each edge in the tree is traversed at . , . .)
or a Y-tree, in comparison, inserting (key, pt) pairs

most once, which can lead to a reduction in total seek tim ,)
[requires that each node on a unique path from root to leaf be

and data transfer time required. In building our analytica) ina th . % full
model for batched value-list index insertion performance, wd€ad and written. Assuming that an average node is 68% full,

assume that the number of nodes read and written is equal f'C€ data are held ininternal nodes as well, the depth of a Y-
the batched insertion set size. This assumption is justified bjf®¢ ~ can ~ be expected to be at most
the following: 10g) gor N ~1090 651, Nv + IogolengO.Gﬂ . Since the final

trans

0.68fY

* We assume that the number of leaf level nodes and thgerm in the above expression will be very small, we ignore it
number of distinct key values inserted into the trees argn our analysis for the sake of simplicity. Note that this
large enough that we can assume that every ri@y, (expression takes into account the fact that the number of
ptr) pair is inserted into @istinctleaf node. The ratio- pairs in a leaf nodeNy) is likely to be different and much
nale for this is as follows. If the structure contains greater than the fanout of the internal nodi (n our anal-

(key, pt) pairs, there are then approximately ,qiq e will also ignore the reduction in the number of leaf

T __ |eaf nodes, assuming an average 68% fillnodes due to the fact that data are also present in internal

Ng, % 0.68 nodes. Assuming that the root node is stored in memory, the

rate. Given the simplifying assumption that each to-be-cost to inserb pairs is then:

inserted attribute value has an equal probability of

belonging to any given leaf node, then, the expected *_JX log n—log No — 1

number of leaf nodes receivingf thed new key, pti d (0.68fy 068fy Y W
.) . 0)

pairs (again assuming a 68% fill rate) X (2% Tyyane X Ny + Tegod

.00, Ne. x0.68) 1 %_Nm:o.eqad—j

D00 n 0 3.2 Queries

Settingj = 0 in the above expression yields the numberQuerying a value-list index is a simple matter. To evaluate a
of leaf nodes receiving none of thikpairs. Thus, the range query, a single path is traversed from root to leaf, down

number of distinct leaves expected to receive at least onte tree. When a leaf node is reached, a string of leaf nodes
are typically traversed, following pointers, until the end of

(Key, pt) pair is: —"— x %l— Erl‘ Ng, X O-GEEdE the range has been reached. The time to process a query
Ng, x 0.68 n returnings (key, pt) pairs, assuming that the root node is res-

Using this expression, we can calculate that, for thddentin memory, is then:
AT&T example of Section 1, with an insertion set size

of one million, we would expect more than 963 thou- IOgO.68NB+n—‘ -1+ (NTSO(SEJ %x (Ttrans* Ngs +
sand distinct leaf nodes to be written. Thus, the savings B+~ ¥
in terms of leaf level pagesot written in this example Teeed

due to batch insert is small (less than 4%). The effect of

this is that in a huge database with a large attributeQuerying a Y-tree is slightly more complex, since an inorder
domain, by using batch insertion, we can avoid multipletraversal of the tree must be undertaken in order to answer a
reads of internal nodes, bnéarly one nodenust stillbe range query. In order to produce a simple expression, we
read/written foreachpair inserted. ignore the fact that since some of the desitegl(pt) pairs

241

Speedup, Point Queries

4096

8192

16384

32768

65536

98304
131072
n
g
2 196606 lea
[}
N
& 262144 <2
(]
°
2 524288 >-2

Insertion Set Size

Speedup, Insertions

4096

8192

16384

32768

65536

98304

131072

196606 >25

262144 >40

>45

524288

Speedup, Range Queries
4096

8192

16384
32768
65536

98304

131072

196606

262144

524288 >8

T0 20 40 80 160 320 640 128025605120

will be found in internal nodes, the actual number of leaf
nodes that must be processed will be less than for a value-list
index having the same leaf node size. Under these assump-
tions, the time needed to query a Y-tree, assuming that the
root node is resident in memory, is then:

glogo_GSfYn—logoﬁszNﬂ -1 E
o z (i - '+le X
. o (fy)'Nyx0.68" " |d
(Ttrans x NY + TSGEQ

Note again that this expression takes into account the differ-
ence between the number of entries in a leaf node and the
fanout of an internal node.

3.3 Discussion

Given the algebraic expressions of Sections 3.1 and 3.2, nat-
ural questions are: How do these expressions translate into
expected query slowdowns and expected insertion speedups
for the Y-tree in a typical system? Are the potential query
evaluation slowdowns justified by the insertion time speed-
ups?

To help answer these questions, in Figure 6 we plot the
analytically expected slowdown and speedup factors for a Y-
tree as opposed to an incrementally constructed value-list
index for a typical, large, database system. Both indexing
structures are assumed to index a table containing 2 billion
records. The seek tim&qiis assumed to average 10 ms,

and the transfer rat€,,,siS one million key, pt) pairs per

second. In each contoured plot depicted in Figure 6, the Y-
tree is compared for a variety of node sizes and insertion set
sizes against a value-list index with a node size of 8KB.

The first plot in Figure 6 shows the analytically
expected speedup for evaluation of a point query returning a
single ey, pt) pair using a Y-tree. Speedup was computed
as (Tg+ - Ty) / Ty The plot shows that as one would expect,
as insertion set size is increased, the performance of point
query evaluation suffers due to the decreased fanout associ-
ated with the larger heap that must be stored in each internal
node. Perhaps slightly more surprising is the fact that
increasing the node size in order to increase the fanout and
perhaps deal with a large insertion set size is only effective
up to a point. This is due to the fact that doubling, or even
increasing the fanout in a tree by an order of magnitude, may
have little effect on the actual number of disk seeks required
to evaluate a query. Why? The reason is that the depth of a

hierarchical structure with an effective fandus | logn| .
Increasing the fanout by the factoyields a depth of:

. . . [log;.,n7| = __logn
Figure 6: Analytically predicted performance of the Y-tree as Y logy + log f
compared to a value-list index with a node size of 8KB. They 1 is for & given database size, increasing an already sig-

time to write one million key, pt) pairs to disk is assumed to

be ten times the average disk seek time.

nificant fanout by 10 times will have little effect because the

242

log of the factor is onlyaddedinto the divisor on the right- ues in leaf nodes (this is essentially equivalent to storing
hand side of the above equation. For large node sizes, the pointers to separate RID-lists at the bottom level of the
gain from the increased fanout is mitigated by the associated tree, and requiring that the RID-lists be stored sequen-
increase in node transfer time. tially on disk).

Figure 6(b) sho_ws the exp(_acted slowdovyn for a Iarge’Thus, the analytical results present only a very rough estima-
range query returning one milliorkdy, ptj pairs. Perfor- tion for the type of behavior that one might expect to

mance for evaluation of range queries is arguably more . : .

:) . encounter in actual implementations of these structures.

important than point query performance, since range query

evaluation is important to join evaluation, which is typically 4,1 Scope

the bottleneck during overall query evaluation. Surprisingly, o

query evaluation for large ranges is expectedly faster b _nor_der to overcome these I_|m_|tat|or_15 and fully test th_e prac-

nearly an order of magnitudesing a Y-tree when compared ticality of the Y-tre_e for use in indexing real data, we imple-

to the value-list index. This is due to the typically much Mented the following:

larger leaf node size in a Y-tree, which more than compend) An optimal, bulk value-list index loadéie implemented

sates for the smaller Y-tree fanout. Moreover, we argue thaa bulk loader that builds a packed value-list index at a fill rate

if any type of incremental insertion algorithm must be usedof p%, wherep is a parameter supplied at index creation

frequently by a value-list index, it inot a viable option to time. All leaf nodes are written in sequence to disk, guaran-

increase leaf node sizes to those comparable to the larger ¥eeing that once a single RID has been located, no seeks need

tree node sizes in order to speed up processing of large rangpe performed during range query evaluation as all RIDs are

queries using a value-list index. This is because the timéead in sequence.

needed to perform insertions will increase proportionally2) Non-optimal, Y-tree and value-list index bulk loadaite

along with the larger node size using the value-listindex. also implemented non-optimal loaders, which build trees
It is also interesting to note that there is little additional packed to araveragefill rate p%, where leaf nodes are not

cost associated with the inorder traversal of the Y-tree agyritten in sequential order, in order to simulate a tree that

opposed to simply following pointers along leaf nodes, as ishad been built incrementally as the data accumulated.

typically done in a value-list index. This is because the num—3) Value-list index and Y-tree insertion and query algo-

ber of additional internal nodes that must be accessed is tyRr, < \ve implemented Y-tree query and insertion, as well
ically tiny when compare_d to the number of leaf nOde_Sas batched value-list index insertion and the value-list index
acces_sed, anq thus adds little cost to range query evgluauo&u(ary algorithm. For these algorithms, root nodes were

F'na.“y’ Figure 6(c) .ShOW_S the speedup of insertion Ofpinned in main memory, and a FIFO buffer of nodes was
one million Q<eyf Pt pairs using a Y—tree_ as compared 1o maintained (in order to simulate DBMS caching), in addition
using batched insertion into the value-list index. For theto the caching provided by the file system
parameters used to produce the plot, speedups of more than '

50 times are analytically predicted. 4.2 Query Processing Experiments

4 Experimental Results For testing query processing, we ran two sets of experiments,
. . . concentrating on queries and insertions, respectively. We
Unfortunately, in order to make an analytical model Slmpleconstructed a synthetic data set having a single attribute and
enough to be l.J$EfU|’ a number of _real-world facto_rs mus_t .b%oo million rows of data. We believe that even for a larger,
left out. !n add|t|qn to the assur_nptlons described in detail N eal-world application indexing 10 billion or more rows, the
the previous section, the fOHOW!ng factors were also not CONtesults presented here still hold since the larger database size
sidered in the analytical model. probably equates to only one additional level (if any) in a
« DBMS cachinglf memory permits, it might be possible hierarchical index.
to hold entire upper levels of a tree in memory. Or, a For the query processing experiments, we constructed
FIFO queue of recently-encountered nodes could b@ptimal value-list indexes containing &efy, pt) pair for
maintained. each row of the data set. We built a series of value-list
indexes, one at each of several different node sizes. We con-
structed optimal value-list indexes (as opposed to our analy-
sis of non-optimal indices in Section 3) since we felt that for
a database of that size, the incremental, batched construction
that would have led to a non-optimal tree was not a viable
+ Special, Algorithmic issueJhe effect of the suggested option in practice due to the tremendous time that would be
enhancements of Section 2.3.3, for example, was notequired to build such an index (cf. Section 4.3). In other
considered in the model. Also, space can be saved by th&ords, no one would build such a huge index incrementally
simple enhancement of eliminating redundant key val-

» File system issued-ile system caching, buffering per-
formed by the disk, disk fragmentation, location of data
on disk, etc., will all affect indexing performance and
were ignored by our model.

243

Average Query Evaluation Time Y-Tree Insertion Rates

uery Selectivity (# items returned i i
s | | el o | e] e

Node | 05e108 | 0.5e10° | 0.5e10° y per key
Size Q) (103 (10°) 16384 100 | 0.000958 sec 25 times
2006B | 0.020 sec| 0.088set 2.85 sdc 32768 200 | 0.000843 sec 28 times
8192B* | 0.018 sec| 0.067sef 6.60 seL 65536 | 400 | 0.000566sec 42 times
8192B | 0.018sec| 0.066sec 1.36 sdc 98304 400 | 0.000576 ser 42 timep
16384B | 0.044 sec] 0.068 sec 1.43 sdc 196608 | 800 | 0.000465sec 52 times
140 sde 262144 | 1200] 0.000245sdc 99 timek

32768B | 0.048 sec| 0.065 se

*non-optimal value-list index, provided for comparison

Table 2: Average evaluation times required per query, over
500 trials, for optimal, bulk-loaded, value-list indexes.

Table 4: Y-tree insertion speedup vs. batched, incremental
insertion into a value-list index having a node size of 4096
bytes.
Average Query Evaluation Time that once a leaf node has been reached, no more disk seeks
are required (due to the value-list index optimality), increas-
ing node size past a certain point is harmful as it leads to
Node 0.5e108 05e10® | 0.5e10° Ionger_transfer times for intgrnal_ nodes. In_TabIe 3, we simi-
Size (1) 1@ (1) larly give the query evaluation times required by the Y-tree
for selected combinations of different node sizes and inser-
16384B | 100 0.059 sec| 0.065sec 3.09 gec tion set sizes.
327688 | 200 0.056 sec| 0.064séc 2.81 dec Comparing the two tables, it is clear that there is a sig-
nificant performance hit taken from using the Y-tree for eval-
65536B | 400 | 0.064sec| 0.064s¢c 2.55S€C yating point queries, with the Y-tree taking anywhere from
98304B | 400 0.069 sec| 0.057 sec 2.27 gec three to five times as long. For larger queries (more common
196608 800 0.080 secl 0.076 séc 2.13 sec in OLAP), however, an incrementally constructed Y-tree
may be three times as fast as an incrementally constructed
262144B| 1200| 0.096sec| 0.098sec 2.10 $ec yqiye-list index. With a large node size, the Y-tree is only
Table 3: Average evaluation times required per query, oveP6% slower than a 100% full, optimally constructed value-
500 trials, for Y-trees. list index with leaf nodes located sequentially on the disk.

. . o ~ We believe that the excellent performance for larger queries
in the real world. Since they would have to build it in bulk, It is important, since |arge|’ ranges are of more use during join
can be assumed that this would be done optimally. evaluation.

We also constructed a series rdn-optimal Y-trees in]]
bulk, to simulate Y-trees that had been constructed incre4.3 Insertion Experiments
m_entally. Thys, we will compareptimal value-list indexes For this set of tests, we wished to determine whether, in
with non-optimalY-trees. The Y-trees were constructed at a . . L .
' Spractlce, Y-tree insertion is fast when compared to incremen-
fill rate of 68%, so nodes averaged 68% full. The Y-tree o . . .

: . ; . "tal, batched, value-list index insertion. We now discuss the

constructed in this way were typically 2.2GB to 2.5GB in .
. . o . results of our tests:
size. The optimal value-list indexes were typically around
65% of this size. Incremental, batched, value-list index inserti@ur first set

For each tree constructed, at each of several differernf tests involved using aincremental, batched insertion
guery selectivities, we ran a batch of 500 queries. At thealgorithm on a value-list index that had been constructed
beginning of each run of 500 queries, the tree node cachesing our non-optimal bulk loader to simulate a tree that had
was empty, but it was not flushed as the queries were exdseen constructed completely incrementally. The tree was
cuted. Queries were run at a variety of selectivities. loaded so that each node was, on average, filled to 68% of

We summarize the results at several different selectivicapacity. During our tests, batches of 10,0R8y(pt) pairs
ties and node sizes for value-list indexes above in Table 2. ivere inserted at one time into the tree. Using this method,
is useful to note that since each value-list index is conthe fastest insertion rate was achieved at a node size of 4096
structed optimally, increasing node size past 8KB does littldytes, averaging one insert every 0.0246 seconds. While this
to increase query evaluation efficiency. Since it is the casenethod avoids many of the pitfalls associated with the mas-

Query Selectivity (# items returned)

244

sive rebuild, the insertion rate we achieved was painfullysical B+-tree insertion algorithm used instead. Both the
slow. At this rate, in order to handle the three million inser-LSM-Tree and the Stepped Merge Method utilize algorithms
tions per day without concurrent query processing, morehat efficiently accept and organize the new data until such a
than 20 hours would be required. time as they can efficiently be added to the base relation.

The LSM-Tree uses a smaller, secondary tree to buffer

o) . arger tree, where the new nodes are written out to disk as
results is given in Table 3 above. Clearly, the Y-tree is mucnarge multi-page runs of records known fiing blocks

faster than the value-list index for processing insertions, Withl’hese runs are written out log-style, and older versions of

isnpdeeidups ranging from 25 to nearly 100 over the Value_“SF]odes are kept on disk as long as is feasible to facilitate easy

rollback and recovery, in a manner reminiscent of a log-
4.4 Discussion of Experimental Results structured file system [7]. In the more general case, there can

beN such trees in all, where each tree feeds into a larger tree
The experimental results show that the Y-tree is a viablen a series of rolling merges, with each record eventually
alternative to the value-list index in practice. Due to the SUpTeaching the base relation after passing through each tree.
port for very large node sizes, the Y-tree is considerablyrhe Stepped Merge Method can be viewed as a variation of
faster than an incrementally constructed value-list index fothe | SM-tree, where at each of tHe - 1 levels K trees
large range queries, and is competitive with an optimalinstead of just one tree) are stored and are merged and prop-
value-list index. The primary factor we encountered that lim-agated to the higher level when they become too large.
its node sizes in an incrementally constructed value-lisBecause data are written only once at each level, each data
index is that with larger node sizes come larger insert timesinsertion may require fewer disk operations than in the LSM-
so frequent insertions place a practical limitation on value-Tree.
list index node size. In an important way, the LSM-Tree and presumably the

In general, when insertion rates are fully considered, thestepped Merge Algorithm are superior to the Y-tree: the data

Y-tree looks more attractive still. Handling three million plocks are written to the base relation (the leaf level of the
insertions using a Y-tree may take little longer than 12 min-inal tree) totally full. This implies that the overall space uti-
utes, compared with 20 hours or more using a value-lisfization of these methods would be perhaps 30% greater than
index. If the attribute domain and the database size are botfpr the Y-tree. Also, in the case of the LSM-Tree, if there is
large, a value-list index simply cannot handle such a highonly a single, secondary tree (or if there are multiple trees
sustained insertion rate, taking 100 times as long. When alltored on separate disks) and that secondary tree is stored in
of this is considered together, the Y-tree proves to be WOI’ﬂiinain memory, then query performance may be substantially
serious consideration as an indexing structure. better than for the Y-tree. In this case, the LSM-Tree range

query performance would be comparable to that of the opti-
5 Related Work mally constructed B+-tree due to the large node size (which

While the subject of database indexing has attracted a hug&ould reduce disk seeks during long leaf scans) and high
amount of attention, very few of the proposed methods havépace utilization (which increases the effective fanout).
dealt specifically with the issue of allowing fast inserts. We However, the Y-tree does have some advantages. The Y-
briefly discuss two methods that have addressed the insertidfee€ may exhibit improved query performance over the
problem, and we compare these methods with the Y-treeStepped Merge Method, since at each level of the structure
Specifically we discuss theog-Structured Merge Trept] built by the Stepped Merge Method trees must be
(LSM-Tree) and th&tepped Merge Methddi]. searched during query execution. Unless these trees are
Both of these methods make use of the fact that on a pe§tored on separate disks, query evaluation performance may
insertion basis, it is much faster to buffer a large set of insersuffer. Since some of the trees at certain levels are likely to
tions and then scan the entire base relation at once (which e relatively small, placing each on a separate disk may

organized as a B+-trég adding new data to the structure. require that many more disk seeks be used in order to main-

Since the structure can be scanned in this way with a minizag‘(;]:gy performance than would be needed to simply store

mum of disk seeks, the average time required per insertion i . _
In addition, the Y-tree has at least one important advan-

likely to be much less than would be required were the clas-
y a tage over both of the other methods. Regardless of the inser-

] __ tion pattern, the LSM-Tree and the Stepped Merge Method
1.In contrast, we have described the Y-tree as primarily amyst eventually merge entire smaller trees with entire larger
secondary indexing structure, though it could be used as grees. The Y-tree, on the other hand, can adapt well to certain

primary index. Likewise, the LSM-Tree and the Stepped circumstances such as a small set of “hot” key values. In this
Merge Method could both be used as secondary indices.

245

case, only hot spots would need to be drained to leaf nodegy]
whereas the other methods must rewrite an entire leaf node,
even if only a single key value must be inserted into that
node.

(8]

6 Conclusions

In this paper, we have presented a new, secondary index for
use in huge, constantly growing data warehousing environ-
ments. Our new index, called thetree is fast because of the
use of asingle path, bulk insertianDuring a single path,
bulk insertion, a set of insertions is processed together (simi-
lar to batched insertion into a value-list index) but in contrast
to a value-list index, nodes need be written only osirayle

path from root to leaf, regardless of the key values in the
insertion set.

We have shown that because of this, the Y-tree is very
fast for processing insertions: insertions are processed up to
100 times faster than they can be processed using batch
insertion with a value-list index. Furthermore, the Y-tree pro-
cesses large range queries competitively when compared to
an optimally constructed value-list index, and several times
faster than an incrementally constructed value-list index.
Point query evaluation using a Y-tree is slower, but point
queries are infrequent in OLAP applications. We have dis-
cussed two alternative indexing methods for supporting fast
insertions, the LSM-Tree [4] and the Stepped Merge Method
[1], and pointed out at least one advantage of the Y-tree over
these other methods: namely, the ability of the Y-tree to
adjust well to highly skewed insertion patterns. For these
reasons, we believe that the Y-tree offers an attractive alter-
native to the value-list index for indexing massive, perpetu-
ally growing warehouses.

References

[1] H.V.Jagadish, P.P.S Narayan, S. Seshadri, S. Sudars-
han, R. Kanneganti. Incremental Organization for
Data Recording and Warehousing. Pnoceedings b
the 23rd VLDB Conference

[2] Personal communication w. K. Lyons, AT&T Corpo-
ration, 1998.

[3] M. Nelson.The Data Compression BooM and T
Books, New York, 1996.

[4] P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. The
Log-Structured Merge Tree.Acta Informatica
33:351-385, 1996.

[5] P. O'Neil, D. Quass. Improved Query Performance
with Variant Indexes. InProceedings of the 199
ACM SIGMOD Conference

[6] K. Pollari-Malmi, E. Soisalon-Soininen, T. Ylonen.
Concurrency Control in B-trees with Batch Updates.
IEEE TKDE December, 1996.

246

M. Rosenblum and J. Ousterhout. The Design and
Organization of a Log Structured File SysteACM
Trans. on Computer System$:1:28-52, 1992,

B. Salzberg. Access Methods. @omputing Surveys
28:1, 1996.

